Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Total Environ ; 898: 165515, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37451465

RESUMEN

Urbanization shows continuous expansion and development, ushering in the co-evolution of urban environments and vegetation over time. Recent remote sensing-based studies have discovered prevalent vegetation growth enhancement in urban environments. However, whether there is a temporal evolution of the growth enhancement remains unknown and unexplored. Here we expanded the existing framework for assessing the long-term impact of urbanization on vegetation greenness (enhanced vegetation index, EVI) using long time series of remote sensing images and applied it in Changsha, the capital city of Hunan province in China. Results showed that vegetation growth experienced widespread enhancement from 2000 to 2017, and increased 1.8 times from 2000 to 2017, suggesting strong continuous adaptive capability of vegetation to urban conditions. Although the overall impact of urbanization was negative due to the replacement of vegetated surfaces, the growth enhancement nevertheless offset or compensated the direct loss of vegetated cover during urbanization in the magnitude of 28 % in 2000 to 44 % in 2017. Our study also revealed large spatial heterogeneity in vegetation growth response among various districts at different urbanization levels and found an emergent trend under the observed spatial heterogeneity toward an asymptotic maximum with urbanization, showing EVI converges to 0.22 in highly urbanized areas. We further found that the positive effect of urbanization on vegetation growth is a function of urbanization intensity and time, which implies that the effect of the urban environment on vegetation can be simulated and predicted, and can be verified in more cities in the future. Our study is the first to successfully quantify long-term spatial patterns on the co-evolution of urbanization and vegetation, providing a new understanding of the continuous adaptive responses of vegetation growth to urbanization and shedding light on predicting biological responses to future environmental change.


Asunto(s)
Monitoreo del Ambiente , Urbanización , Monitoreo del Ambiente/métodos , Ciudades , China , Telemetría
4.
Nat Commun ; 12(1): 1526, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750781

RESUMEN

The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.


Asunto(s)
El Niño Oscilación del Sur/efectos adversos , Bosques , Árboles , Clima Tropical , Arecaceae , Asia Sudoriental , Borneo , Cambio Climático , Sequías , Ecología , Humanos , Malasia , Hojas de la Planta , Bosque Lluvioso
5.
Glob Chang Biol ; 27(1): 177-189, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33118242

RESUMEN

Tall trees are key drivers of ecosystem processes in tropical forest, but the controls on the distribution of the very tallest trees remain poorly understood. The recent discovery of grove of giant trees over 80 meters tall in the Amazon forest requires a reevaluation of current thinking. We used high-resolution airborne laser surveys to measure canopy height across 282,750 ha of old-growth and second-growth forests randomly sampling the entire Brazilian Amazon. We investigated how resources and disturbances shape the maximum height distribution across the Brazilian Amazon through the relations between the occurrence of giant trees and environmental factors. Common drivers of height development are fundamentally different from those influencing the occurrence of giant trees. We found that changes in wind and light availability drive giant tree distribution as much as precipitation and temperature, together shaping the forest structure of the Brazilian Amazon. The location of giant trees should be carefully considered by policymakers when identifying important hot spots for the conservation of biodiversity in the Amazon.


Asunto(s)
Ecosistema , Árboles , Biodiversidad , Brasil , Bosques , Clima Tropical
6.
Ecol Appl ; 29(6): e01952, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31206818

RESUMEN

Assessing the persistent impacts of fragmentation on aboveground structure of tropical forests is essential to understanding the consequences of land use change for carbon storage and other ecosystem functions. We investigated the influence of edge distance and fragment size on canopy structure, aboveground woody biomass (AGB), and AGB turnover in the Biological Dynamics of Forest Fragments Project (BDFFP) in central Amazon, Brazil, after 22+ yr of fragment isolation, by combining canopy variables collected with portable canopy profiling lidar and airborne laser scanning surveys with long-term forest inventories. Forest height decreased by 30% at edges of large fragments (>10 ha) and interiors of small fragments (<3 ha). In larger fragments, canopy height was reduced up to 40 m from edges. Leaf area density profiles differed near edges: the density of understory vegetation was higher and midstory vegetation lower, consistent with canopy reorganization via increased regeneration of pioneers following post-fragmentation mortality of large trees. However, canopy openness and leaf area index remained similar to control plots throughout fragments, while canopy spatial heterogeneity was generally lower at edges. AGB stocks and fluxes were positively related to canopy height and negatively related to spatial heterogeneity. Other forest structure variables typically used to assess the ecological impacts of fragmentation (basal area, density of individuals, and density of pioneer trees) were also related to lidar-derived canopy surface variables. Canopy reorganization through the replacement of edge-sensitive species by disturbance-tolerant ones may have mitigated the biomass loss effects due to fragmentation observed in the earlier years of BDFFP. Lidar technology offered novel insights and observational scales for analysis of the ecological impacts of fragmentation on forest structure and function, specifically aboveground biomass storage.


Asunto(s)
Ecosistema , Bosque Lluvioso , Brasil , Bosques , Árboles , Clima Tropical
7.
PLoS One ; 11(7): e0158198, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27367857

RESUMEN

It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance.


Asunto(s)
Biomasa , Bosques , Modelos Teóricos , Árboles/crecimiento & desarrollo , África Occidental , Árboles/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...